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Abstract-This paper describes the development of a transient technique to measure thermal diffusivity 
and conductivity of porous samples. The method uses the film heat sensor to probe heat flux. Temperature 
and heat flux are measured dynamically allowing conditions to vary in time at the point of measurement. 
The data are then treated by a deconvolution algorithm. rendering results proper IO simpler models for 
the same geometry. The numerical treatment in the deconvolution procedure was verified for a hypothetical 
case. The method was finally tested in the laboratory, with experiments made on samples of natural rock. 

INTRODUCTION 

HEAT TRANSFER properties of porous media con- 
taining fluids constitute the most basic input for ther- 
mal engineering calculations in several fields. Knowl- 
edge of these properties is definitely required for the 
design and evaluation of thermal methods of oil recov- 
ery. It is often needed in applications as diverse as 
insulation design, food processing, geothermal engin- 
eering and in fundamental studies in soil science, geo- 
physics, to name a few. Many numerical and ana- 
lytical models are available for the evaluation and 
analysis of the several thermal related processes 
involved in those areas. Models have been developed 
to take into account several different aspects of the 
heat transfer physics. The common ground is that the 
great majority of these models are indistinctly based 
upon well defined, well-characterized physico-chemi- 
cal properties. The usual, implicitly assumed premise 
is that physical properties can be measured as precisely 
as demanded, either in the labs or in the field. In 
this sense, all models depend on accurate and correct 
measurements of the characteristic properties to ren- 
der meaningful results. This is even more crucial as 
engineers and scientists progress towards more refined 
models. 

The apparatus depicted in Fig. I is an equipment 
designed for measurements of thermal conductivity 
and diffusivity in cores extracted of oil bearing for- 
mations. Intended for both steady and unsteady 
measurement methods, the cell can accommodate 
rock samples of 3.81 cm in diameter by 2.54 cm long. 
The design allows one to vary the saturation of multi- 
phase fluids at different temperature levels up to 
232°C. In order to avoid fluid vaporization at higher 

temperatures, the cell is built to hold external press- 
ures of up to 28 x IO” Pa. Regarding heat loss preven- 
tion, the design follows the guarded hot plate idea. 
The heat source is surrounded by a guard ring to 
force heat from the source to flow axially through the 
sample. The guard heater temperature is controlled 
independently. A separate electrical system controls 
the heat supply to maintain both the heat source and 
the guard heater at the same temperature. The equip- 
ment differs from a standard guarded hot plate by the 
sleeve encapsulating the sample, necessary to confine 
the specimen under pressure. More details on the 
apparatus can be found in ref. [I]. 

HEAT SENSORS 

Most experiments held in the heat transfer area use 
only thermocouples or resistance temperature detec- 
tors (RTD), and only temperature is measured as a 
primary variable. Heat flux is rarely measured. Being 
an important quantity for most thermal engineering 
purposes, the heat flux is usually calculated or inferred 
from the temperature distribution across the system. 
When the energy balance permits, the heat flux can 
also be calculated from measurements of external 
energy inputs to the thermal system. 

The measurement of heat flux can become an essen- 
tial task, as in the methodology proposed in this work. 
The thin film technology presents good potential to 
meet the requirements of a fast-response, low thermal 
resistance, low interference technique. As in most 
techniques, the amount of heat flux is determined by 
the heat conduction between two points. It basically 
requires the temperature difference and the thermal 
resistance between the two points to be known. The 
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NOMENCLATURE 

A cross-sectional arca 
K conductivity 
L length 
(/ heat flux 

(/r reference heat flux 
s Laplace variable 
t time 
T temperature 
s Cartesian coordinate. 

Greek symbols 
thermal diffusivity 
angular coefficient 

0 dimensionless temperature 
0 dimensionless temperature 
Y solution for unity temperature at the 

boundary 
n solution for unity heat flux at the 

boundary. 

Superscripts and subscripts 
( I* dimensionless variable 
(-) quantity in Laplace space 
( 1, initial condition 
( L at the boundary. 

heat sensor is made with a thin plastic film of very well pairs are assembled on each side of the film, so that 
and accurately determined conductivity. The sensor the thermoelectric junctions on one side directly face 
determines the heat flux by measuring the temperature those on the other side (see Fig. 2). Due to the small 
difference across the film. A number of thermocouple temperature difference across the film-the difference 
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FIG. 1. Schematic of the experimental apparatus. 
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FIG. 2. Heat flux sensor. 

is obviously directly dependent upon the plastic con- 
ductivity and film thickness-the thermocouples are 
electrically connected to provide a detectable voltage 
signal at the output. As in the case of thermocouples, 
the voltage difference is proportional to the tem- 
perature difference across the plastic layer and there- 
fore to the heat flux crossing the layer. The sensor 
selected to carry out the experiments of the present 
work is the RdF 20457-2 sensor. The reasons for 
choosing this sensor were basically the very low ther- 
mal resistance presented by the probe, the small size 
aspect of the sensitive area (which makes the sensor 
extremely appropriate for laboratory use) and the 
thermal capacity-response time low range of the 
complete set. The sensitivity, which is associated with 
the number of thermocouple pairs embodied in the 
sensor, was the parameter to sort out the series offered 
by the manufacturer. The criterion used to pick the 
model in the series was the product ofthermal capacity 
and response time. The nominal characteristic values 
for the model chosen are, as translated from the data 
furnished by the manufacturer: 

sensor 
sensitivity 
response time 
thickness 
thermal capacity 
thermal conductance 
number of pairs 

RdF model 20457-2 
1.05 nV W-’ m-’ 
0.060 s 
0.15 mm 
0.41 kJ K-’ m-’ 
0.0284 W Km’ m-’ 
40. 

TRANSIENT METHOD 

Experimental methods used to determine thermal 
conductivities of materials can be classified into two 
major categories: (I) steady state methods and (2) 
transient methods. 

The most distinctive feature between the two cat- 
egories is the variation in time of the temperature 
distribution. Transient methods involve the complete 
differential equation for heat flow, where time and 
space are both considered. As conduction problems 
present first a non-steady regime, steady-state 
methods must guarantee that the transient period has 
ended. So, in contrast to transient methods, steady- 
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state techniques require long periods to be realized. 
The short-time advantage of the transient methods 
places the burden on the demand for very accurate 
and rapidly responding instruments. On the other 
hand, heat losses have a smaller infuence when mea- 
suring times are shorter-relieving transient methods 
of the struggle to eliminate all accounted and non- 
accounted heat losses. 

Thermal conductivity is determined in steady state 
procedures from the measurement of two quantities : 
(I) the heat flux crossing a unidimensional specimen 
and (2) the temperature difference between two points 
along the specimen. The heat flux is usually deter- 
mined from a heat balance over the sample. One 
strong reason to wait until the steady state regime 
settles is to avoid energy accumulation in the sample 
or metering blocks, which would be one more source 
of error in the energy balance. The other major con- 
cern with making the appropriate heat balance is 
related to the heat losses. Most of the discussion of 
steady state procedures has been about methods to 
prevent and methods to properly account for heat 
losses. 

In the specific category of transient methods, sev- 
eral techniques have been proposed [2]. The profusion 
of methods is related to the diversity of configurations, 
materials and applications of heat conduction. 
Methods have differed by the geometry of specimens 
and by the boundary conditions imposed on them. 
Examples of the richness of the field are the collection 
of periodic temperature techniques and plain tran- 
sitory methods. They have been applied on rods, long 
rods, flat plates, semi-infinite solids, spheres and 
others. Some of these methods also are branched out 
by procedures used to prevent or to account for heat 
losses. Most of the transient techniques are based only 
on temperature measurements and for this reason are 
bounded to the determination of diffusivity only. 

In order to determine conductivity the heat flux 
must be measured or determined from independent 
data. The experimental procedure to fulfill this need 
has traditionally been to place a constant heat source 
at a convenient boundary. The heat flux is then mea- 
sured by the electrical power input to the heat source, 
implicitly assuming that the heater has negligible heat 
capacity, that there are no heat losses through edges 
or wires. Unidimensional conduction also requires 
that the constantly generated heat is evenly distributed 
over the heater sample contact area. The temperature 
changes associated with the heat input are measured 
either at the same boundary [3] or at a certain depth 
into the sample [4]. 

The method proposed in this study can also be 
classified in the transient category. It uses the thin film 
sensor technology to measure the heat input into the 
sample. The thin film technology has only recently 
gained attention from scientists and engineers [5] and 
to our knowledge is used for the first time to evaluate 
thermo-physical properties of materials. The heat 
sensor is able to measure dynamically varying heat 

inputs. Along with the temperature readings by ther- 
mocouples, which also permit time variation, these 
data form the history of the test. The data treatment 
involves deconvolving the temperature and heat flux 
as functions of time, so that simpler models can be 
generated for the same physical configuration. This 
method presents important advantages over other 
transient methods, the most important being : 

(I) There is no restriction on the heat capacity of 
the heating source, as the heat is measured right at 
the interface where it is needed to be known. 

(2) There is no need to insert probes inside the 
sample, so avoiding the common problems observed 
in this action, such as poor thermal contact and physi- 
cal alterations caused by machining operations. 

(3) There is no need to guarantee specific boundary 
conditions at the measuring surface, such as constant 
heat input or constant temperature. 

(4) The possibility of measuring one more charac- 
teristic (besides diffusivity), if the experiment is run 
long enough. 

(5) Although not intended to substitute steady 
state methods in the determination of conductivity 
in long term experiments, the proposed method is 
particularly useful in situations where long term heat 
transfer occurs also at dynamically varying con- 
ditions. 

ANALYSIS 

The heat transfer across a one-dimensional slab is 
governed by the differential equation 

a'T IdT 
dx'=a ar (1) 

where a = thermal diffusivity of the medium, T = 
temperature and I = time. The entire sample (slab) is 
initially at a homogeneous temperature 

r=O T=Ti. (2) 

The temperature at the cool end of the sample is 
maintained constant 

x=L T=Ti. (3) 

The boundary condition at the heated surface involves 
variations of both heat flux and temperature. 

‘x=0 K/l~=q&) 
x=0 T(0) = T,,(r). (4) 

These two quantities, known from the measurements 
in the experimental procedure, are not independent. 
They are related to each other by a function of the 
parameters we want to determine, namely, the diffus- 
ivity and the conductivity of the sample material. One 
way to disclose the relation between qO(t) and T,,(t) is 
to examine the two following independent problems. 
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Problem I-known temperature at s = 0 

a?0 do 
dx*?=at* 

r*=O o=o 

(5) 

x* = 0 0 = o,(f*) 

x*=1 O=O (6) 

which is the non-dimensional version of the problem, 
after substituting the non-dimensional variables 

.y* = x 
L 

T-T 
O=” 

qrL 
KA 

(* =; 

4 
4 *=- 

Qr 
(7) 

The solution to equations (5)-(7) can be given by 

s 

I. 
B= q.(r*)$*-r)dl (8) 

0 

where R is the solution of the same problem when 
o,(f*) = I. 

Problem II-known heat flux at x = 0 

a20 ac3 ~=- 
a.92 at* 

r* = 0 o=o 

(9) 

x* = 0 
de 
- = q,f(t*) ax* 

x* = 1 0 = 0. 

The solution in this case is given by 

(10) 

s 

I. 
@= q:(f*)t$(f*-T)dT (11) 

II 

Y being the solution to the problem with qz(t*) = I. 
In Laplace space, the basic solutions R and Y are 
given by 

n = sinh [(I -X*),/S*] 
s* sinh (,/s*) 

(12) 

9 = sinh [(I -x*),/s*] 

s*Js* cash (Js*) ’ 
(13) 

Also the convolution integrals of equation (8) and 
equation (I I) can be expressed by 

e = o,s*!a (14) 

and 

0 = qo*s*q. (15) 

Recalling that Problems I and II are two different 
interpretations of the same physical problem, in other 
words, 0 = 0 

(16) 

or 

2 _ tanh (Js*) 0 -- * (17) 
40 Js* 

The limit for small values of s*(r* + 03) of the pre- 
vious function is 

lim 5 = I. 

(0 r--o * 40 
(18) 

While for large values of s* (small r*) 

(19) 

Figure 3 shows the characteristic curve of the func- 
tions in equation (16) vs s* in a log-log plot. At the 
range of large s* values the curve turns to a straight 
line of slope -(l/2), corresponding to the transient 
period of heat conduction. The steady state regime is 
characterized by the flat portion of the curve. A type 
curve match could be used by taking the plot of Fig. 
3 as the type curve to verify the transition between 
regimes and to estimate both parameters of con- 
ductivity and diffusivity. The scale on the vertical 
coordinate of the real data plot would be (r,- T,)/q,, 
which is related to the corresponding scale of the type 
curve by 

(20) 

FIG. 3. Type curve Ibr constant heat flux boundary in Laplace 
space. 
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Once the steady state plateau on Fig. 3 is reached, the 
thermal conductivity is determined by 

K=L [ - 1 rlo 
A (T*-T,) 

Also from the curve of Fig. 3, the steady state regime 
is fully established for s* values lower than 2.5 x 10-l. 
In terms of real data calculations the corresponding 
criterion for s is 

s=~s*<~x2.5xlo-‘. (22) 

However, the determination of diffusivity may be 
obtained from data gathered at earlier times. in other 
words for higher values of s. This is accomplished by 
observing that for s* --) rye 

0, 
==s *- I,‘2 

YX 

or in terms of dimensional data with 

The coefficient at the right hand side of equation (24) 
can be determined from the slope of the plot (T, - T,)/ 
G vs s- I!?. I f  the slope of the curve is /I, then 

/I=$. (25) 

NUMERICAL TEST 

The procedure to determine K and ct via equations 
(21) and (25) involves first recording the time evol- 
ution of (7’,, - Ti) and q, since the very beginning of 
the experiment. The Laplace transform, needed to 
deconvolute the temperature and heat flux functions, 
is calculated numerically from both history data. This 
calculation yields the values necessary to plot a curve 
similar to Fig. 3. The Laplace transform is obtained 
by numerically integrating 

= (To-Ti)(S) = 
s 

e-“(T, - Ti)(t) dr. (26) 
0 

The numerical procedure used in the present work to 
calculate the integral in equation (26) is based on a 
Simpson adaptive scheme [6]. Interpolation of data 
was obtained by a cubic spline method of second order 
[7]. The upper limit of the integral in equation (26) 
depend on s and, for the purpose of this work, its 
numerical value is taken high enough to render no 
alteration greater than I x IO-’ to the integral result. 

In order to evaluate the accuracy of the numerical 
treatment, a test was developed with artificially gen- 
erated data. As the temperature increase in the early 
moments is certainly commanded by the thermal iner- 
tia of the upper metallic block in the apparatus of Fig. 
1, a linear temperature history was assumed to hold at 

the surface of the sample. If  a reasonable temperature 
difference of IO-C is to be imposed on the sample, the 
linear increase will be effective until 2000 s given the 
mass of the upper block. After this time the tem- 
perature control system acts to maintain constant 
temperature at the surface. The temperature history 
is so described by 

T,-T,=5x10m3r, r<2000 (27) 

To-r, = IO, t 2 2000. (28) 

The heat flux at the surface associated with the 
imposed temperature increase is calculated from the 
analytical solution to the problem of heat conduction 
in a slab [8]. It is obtained by numerically inverting 
the Laplace transform [9] of 

z= (29) 

(To-T,) =~(l-ee20”o’). (30) 

The geometric parameters used to generate the data 
reflect the apparatus of Fig. I. The physical properties 
of the hypothetical sample are taken as representative 
of oil saturated sandstones. The input values are 

L = 2.54x IO-‘rn 

A = 8.0 x 10-4m’ 

a= lx 10-6m2s-’ 

K=Z.SWm-‘K-l. (31) 

Figure 4 shows the artificial data curves taken as input 

1.0 

0.8 5 

2 

0.6 g 

P 

, 0.4 

0 L, 0.0 
0 2000 4000 6000 800010000 

Time (s) 

FIG. 4. Simulated history data with K = 2.5 and (I = I x IO-‘ 
W). 
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to the data treatment scheme for obtaining con- 
ductivity and diffusivity. 

Following the procedure explained in the previous 
section we were able to reproduce the format of the 
curve in Fig. 3 as shown in Fig. 5. In this figure the 
treated data is plotted for discrete values of S. The 
curve levels off in the small range of s at the value 

(To-Ti) 
-= 12.696KW-’ 

z 
(32) 

yielding, according to equation (21) 

K=25008Wm-‘K-’ (33) 

which is a very accurate reproduction of the value 
assumed in the data generation process. 

The diffusivity is determined by plotting the curve 
shown in Fig. 6. The slope of the straight line in the 
figure, determined by linear regression. is 

/I=OS007KW~‘s-“’ (34) 

rendering, from equation (25) 

a= 1.002~lO-~rn’s~’ (35) 

against the original value of 1 .O x IO-“. These test 
results show that the numerical scheme used is very 
accurate and adequate to treat the data. 

EXPERIMENTAL PROCEDURE AND RESULTS 

The cell as depicted in Fig. I was mounted on a 
bench with the heaters connected to independent 
power suppliers. The power supply to the heaters was 
monitored and controlled by a data acquisition 
system. Thermocouples were placed near each guard 
heater, in order to guarantee an even temperature 
gradient along the axis of the cell. The heat flux and 
temperature readings were stored in the system at 

100 
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FIG. 5. Constant heat flux solution from deconvolved data. FIG. 7. Temperature history during the experiment. 
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F;G. 6. Early transient solution after data deconvolution. 

frequencies that varied through the experiment 
history. Data collection was more intense at the begin- 
ning of the runs, and progressively diminished as time 
passed. Typically, the readings were recorded every 
0.5 s at the first 30 s (starting at the moment the 
differential heating begins), every 5 s up to 5 min, 
and then every minute till the end of the run. The 
temperature at the bottom of the sample was main- 
tained constant by combining the inputs of an electric 
heater and a coiled-tube heat exchanger. Cooling in 
this case was provided by air circulation. 

The sample used in the laboratory measurements 
was a dried limestone cylindrical core. The dimensions 
were 3. I75 cm diameter and 2.54 cm length. The tests 
begin by bringing the whole apparatus to a constant 
homogeneous temperature. After leaving the cell in 
this condition for 2 h, the recording starts and the 
system is maintained quiescent for another 30 min. 
The main heater is turned on while the bottom heater 
is controlled to keep the bottom temperature 
constant. In the tests reported here, the main heater 
was programmed to sustain the top temperature also 
at a-constant value. Figures 7 and 8 illustrate the 
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FIG. 8. Heat flux applied at the top surface of the sample. 

recordings obtained for the temperatures and the heat 
fluxes, respectively. The data are plotted as collected. 
The oscillations in the temperature and heat flux read- 
ings are due to the power switching for the control of 
the system. In the case of heat flux, it started only 
after the top of the sample reached the desired tem- 
perature. In order to proceed with the data treatment, 
the heat flux data were smoothed out by a filter algo- 
rithm based on Fourier transforms [7]. 

The experimental data were then treated by the 
techniques explained earlier in the paper. The final 
treated data are shown on the plots of Figs. 9 and IO, 
respectively for the determination of diffusivity and 
conductivity. The number of points on these graphs 
is irrelevant and there can be as many points as 
desired. The s range covered by the data is very impor- 
tant. The graph in Fig. 9 shows that below a certain 
value of s- ‘I’, the data points deviate from the straight 
line. The reason is the uncertainty brought by the 
extrapolation to very small values of time. For s values 
greater than 0.02 (s- ‘I’ less than 7 in the graph) the 
minimum limit in the Laplace transform must be less 

y = -0.049064 + 0.77423 ST-“’ 

FIG. 9. Early data plot used to estimate diffusivity. 

1 
10.’ 10’5 10-3 10” 

S 

FIG. 10. Long term plot used to determine conductivity 

than 0.5 s for an accuracy better than 1%. In the 
extreme low limit the theoretical point (0, 0) helps 
locate the line needed for parameter estimation. For 
the data set obtained in this example case, the linear 
fit shown on Fig. 9 yields 

p=0.774KW-‘s-‘I’. (36) 

The plot on Fig. IO refers to the steady-state regime. 
In the lower range, for s values less than 1OeJ, heat 
conduction has achieved the steady condition. As 
pointed out before, at this point the curve levels off 
to a horizontal line. The offset from the straight line 
seen at s = 3 x 10e5 drives attention to the error intro- 
duced by the upper limit in the Laplace transform. 
The smaller the value of s, the greater the upper 
limit must be to render accurate results. In the tests 
reported here, down to s values of IO-“ the upper 
limit used was IO“. In the s range below 10-4, the limit 
was increased to IO’. For illustration purposes, the 
offset point in the figure was obtained with an upper 
limit of 104. It is vitally important to count on an 
appropriate algorithm of extrapolation, if the trend 
must be confirmed on an experiment that is definitely 
stabilized but is not run long up to the upper time 
limit. A well-behaved pattern for both temperature 
and heat flux history data is also very helpful at this 
stage. The value obtained in the steady region is 

(37) 

rendering for the conductivity of the sample material 
the value of K = 1.59 W m-’ K-‘. From these figures 
the value obtained for the diffusivity is o! = 0.97 x 10e6 
m2 ss’. 

CONCLUSION 

A new transient method is proposed to measure 
thermal properties, specifically diffusivity and con- 
ductivity, in saturated porous material. The numerical 
procedure needed to treat the data was tested for 
accuracy against theoretical data and proved to be 
adequate. The whole method was used to obtain prop- 
erties in the laboratory from field samples. The time 
required in the procedure was somewhat long, in the 
order of the time needed in steady-state methods. This 
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is due, however, to the fact that the cell used in the 

experiment was designed for steady-state measure- 

ments. This time can be significantly reduced if a 
smaller sample is used or if diffusivity is the only 

objective. 
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